Pituitary Tumours 2015: The Oxford experience

John Wass Department of Endocrinology, Oxford University, UK Academic Vice President, Royal College of Physicians, London

Caledonian Society for Endocrinology 2015 meeting Friday 27th of November 2015

Classification of Pituitary Tumours

prolactin growth hormone (GH) adrenocorticotrophic hormone(ACTH)

NON FUNCTIONING

VERY RARE:

Thyroid stimulating hormone (TSH) Luteinising hormone (LH) Follicle stimulating hormone (FSH) Clinical Endocrinology (2010) 72, 377-382

doi: 10.1111/j.1365-2265.2009.03667.x

ORIGINAL ARTICLE

Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK)

Alberto Fernandez, Niki Karavitaki and John A. H. Wass

Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK

81,449 Inhabitants 91% of study population

	PRL	NFA	ACRO	CD	TOTAL
Total No.	37	18	7	1	64
Prevalence (100,000)	45.6	22.2	8.6	1.2	78.8
Duration of symptoms (yrs)	0.5-12	0-8	1.5-15	7	

Prevalence 79/100,000

Distribution of pituitary adenomas subtypes

Clinical Endocrinology (2007) 67, 938-943

doi: 10.1111/j.1365-2265.2007.02990.x

ORIGINAL ARTICLE

What is the natural history of nonoperated nonfunctioning pituitary adenomas?

N. Karavitaki*, K. Collison*, J. Halliday*, J. V. Byrne†, P. Price‡, S. Cudlip§ and J. A. H. Wass*

*Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, UK, †Department of Neuroradiology, John Radcliffe Hospital, Oxford, UK, ‡Department of Diabetology and Endocrinology, The Great Western Hospital, Swindon, UK and \$Department of Neurosurgery, John Radcliffe Hospital, Oxford, UK

- All patients presenting to the Department of Endocrinology in Oxford between 1989-2005 with presumed NFA.
- Inclusion criteria:
 - imaging features suggestive of a pituitary adenoma,
 - no clinical and/or biochemical evidence of hormonal hypersecretion,
 - monitoring being the initial choice of management,
 - at least one repeat imaging during the follow-up period.
- Subjects presenting with acute apoplexy were excluded.

Table 3. Outcome of follow-up imaging

Total tumours Microadenomas Macroadenomas

Mean follow-up,	42 (8-128)	41 (8–128)	43 (9–98)
months (range)			
Increase in size, n (%)	14/40 (35)	2/16 (12.5)	12/24 (50)
Mean time of detection,	34.3 (11–98)	21 (20-22)	36.5 (11–98)
months (range)			
Stable, <i>n</i> (%)	21/40 (52.5)	13/16 (81.3)	8/24 (33.3)
Decrease in size, n (%)	5/40 (12.5)	1/16 (6.3)	4/24 (16.7)
Mean time of detection, months (range)	24.6 (7-46)	19 (-)	26 (7-46)
-			

Fig. 2 Probability of tumour enlargement in patients with microadenoma during the follow-up period.

Pituitary apoplexy in non-functioning pituitary adenomas: long term follow up is important because of significant numbers of tumour recurrences

A. Pal*, C. Capatina*, A.P. Tenreiro*, P.D. Guardiola*, J.V. Byrnet, S. Cudlip‡, N. Karavitaki* and J.A.H. Wass*

*Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford; †Department of Neuroradiology, The John Radcliffe Hospital, Oxford; ‡Department of Neurosurgery, John Radcliffe Hospital, Oxford, UK

© 2011 Blackwell Publishing Ltd, Clinical Endocrinology

NFA recurrence rates after classical pituitary apoplexy

32 patientsmean age 58.5 years (29-85)mean follow up 65 months (3-211)5 given adjuvant radiotherapy

3 (11.1%) patients relapsed at a mean 51 months

Relapse Free Survival After Classical Pituitary Apoplexy (NFAs)

European Journal of Endocrinology (2011) 165 739-744

CLINICAL STUDY

Can we ever stop imaging in surgically treated and radiotherapynaive patients with non-functioning pituitary adenoma?

Raghava Reddy, Simon Cudlip¹, James V Byrne², Niki Karavitaki and John A H Wass

Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford OX3 7LJ, UK, Departments of ¹Neurosurgery and ²Neuroradiology, The John Radcliffe Hospital, Oxford, UK

(Correspondence should be addressed to J A H Wass; Email: john.wass@noc.nhs.uk)

CLINICAL STUDY

Can we ever stop imaging in surgically treated and radiotherapynaive patients with non-functioning pituitary adenoma?

Raghava Reddy, Simon Cudlip¹, James V Byrne², Niki Karavitaki and John A H Wass

- •155 patients (94M)
- •29 followed > 10 years
- •Mean follow up 6.1 years (median 4.3 range 1-25.8)
- Regrowth 34.8%

20.4% relapse > 10 years

Table 2: Re-growth rates detected by 1, 5 and 10 years in the 3 groups based on postoperative imaging details.

	No residual tumour (A)	Intrasellar residual (B)	Extrasellar residual (C)
At 1 year	0%	1.5%	4.2%
At 5 years	0%	20%	53%
At 10 years	6%	53%	80%
P Value			
Vs A	-	0.001	<0.001
Vs B	0.001	-	<0.001
Vs C	<0.001	<0.001	-

Figure 1: Relapse rate according to postoperative scan classification.

FOLLOW UP ALGORHITHM for NFAs

Operation

(Euthyroid

<u>+</u> steroid cover)

Reassess post operatively All axes even if hypopituitarism pre-op @ 6 weeks

Synacthen + ITT + basals

-T3 peri-operative

-12% recovery

3 months post op scan

Little residual tumour

+ no cavernous sinus tumour

Annual MRI pituitary

- 5 years

- then 2 yearly

Residual tumour + cavernous sinus involvement Adjuvant external beam pituitary irradiation

Indications for considering post operative radiotherapy

Residual tumour post operatively in cavernous sinus

Difficult resection with firm/hard tumour

<u>Side effects</u> hpopituitarism late tumour development (2%) ? Memory problems cerebrovascular disease

Aggressive pituitary tumours: the role of temozolomide and the assessment of MGMT status

Ann I. McCormack^{*,†}, John A. H. Wass[†] and Ashley B. Grossman[‡]

Eur J Clin Invest 2011; 41 (10): 1133-1148

Temozolomide use in Pituitary Tumours

Since 2006

First chemotherapeutic agent to be successful Maximal response - 10-12 months Complete hormonal normalisation 50% Maximum 80% reduction in tumour size Response may continue for up to 3 years after drug

European Journal of Endocrinology (2009) 161 631-637

Temozolomide

(McCormack et al, Eur. J. Clin. Invest. 2011 41 1133)

Oral alkylating agent

Treatment of pituitary tumours – overall 24/60 (response 60%)

Prolactinomas73%ACTH secreting60%(including Nelsons)40%

i.

Response evident first 3 months

Temozolomide

The Future

Controlled trials - multicentre - dose regimen ? Duration

Dual therapies + Bevacizumab (anti VEGF a/b)

Long-term data collection on temozolomide (so far only 13)

markers of aggressive behaviour in tumours

Clinical Endocrinology (2013) 79, 217-223

doi: 10.1111/cen.12124

ORIGINAL ARTICLE

Does hypopituitarism recover when macroprolactinomas are treated with cabergoline?

Niki Karavitaki*, Ruxandra Dobrescu*, James V. Byrnet, Ashley B. Grossman* and John A. H. Wass*

*Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital and †Department of Neuroradiology, John Radcliffe Hospital, Oxford, UK

Do patients with macroprolactinoma have an improvement in pituitary function?

11 Patients (10 M 1 F) aged mean 38 (17-56) 9 Followed for 3 years; 2 for 2 years All achieved normal prolactin All had significant tumour shrinkage All had pituitary function assessed yearly (insulin/glucagon test and basal bloods)

Hormone deficits

ORIGINAL ARTICLE

Recurrence of hyperprolactinaemia following discontinuation of dopamine agonist therapy in patients with prolactinoma occurs commonly especially in macroprolactinoma

Thomas M. Barber*, Julia Kenkre*, Catherine Garnett*, Rebecca V. Scott*, James V. Byrnet and John A. H. Wass*

*Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, and †Department of Radiology, Churchill Hospital, Oxford OX3 7LJ, UK

Do Macroprolactinomas Recur after 3-5 Years Treatment?

Number of patients:15 Treated > 3 years (mean 7.5 years) Prolactin suppressed to normal

Do Macroprolactinomas Recur a after 3-5 Years Treatment?

Recurrence of hyperprolactinaemia in 14 (93%) Mean time to recurrence 8.8 months Mean prolactin at baseline 28,246 mU/L on treatment 144 mU/L at recurrence 2,236 (411-12,847)

Clinical Features due to:

Growth hormone over secretion

Pituitary tumour

Clinical effects e.g. enlarged hands and feet

Metabolic effects e.g. diabetes mellitus

Local effects e.g. visual field defects

Endocrine effects e.g. hypopituitarism

Mortality in Acromegaly (Abosch et al JCEM 1998)

UK Acromegaly Register 2012

Control of IGF₁ and GH in the cohort

	Controlled	Non controlled
GH (n=164)	57%	38%
IGF ₁ (n=145)	55%	30%

 $GH = 2 \mu g/L$ IGF₁ = the normal range

Size of tumour

Fig. 2 Success and failure rates with time of surgery. ■ Remission; □ Failure.

Ahmed S, Elsheikh M, Page RCL, Adams CBT, Wass JAH. Outcome of transphenoidal surgery for acromegaly and its relationship to surgical experience. Clinical Endocrinology 1999; 50, 561-567

Pre-Treatment GH and Outcome in Acromegalics on Somatostatin Analogues

Pre-Treatment GH mU/L	Cure Rate %
5-10	60
10-20	48
20-30	54
30-60	31
60-100	19
>100	14

Acromegaly Prospective study of GH macroadenomas in Oxford - Is surgical debulking worthwhile?

Protocol

29 patients (12M) with acromegaly and macroadenoma 1 DNA, 1 lost of follow-up

27 patients (11M) - studied prospectively - completed the study

- 1. Treated with lanreotide 2 weekly preoperatively for 16 weeks.
- 2. Reassessed at 8 weeks if necessary (GH >5 mU/L) lanreotide increased to weekly.
- 3. Surgery.
- 4. 4 months post surgery reassessed.
- 5. If GH > 5 mU/L retreated with lanreotide as preoperatively.

Prospective study of GH macroadenomas in Oxford - Is surgical debulking worthwhile?

Pre and post operation lanreotide comparison in uncured patients

Pt	Pre op + lanreotide	Post op + lanreotide	
	GH (mU/L)	GH (mU/L)	
9	12	8	
13	19	3	
17	36	4	
21	17	5	
27	183	53	
29	20	17	

Treatment Paradigms in Acromegaly

From Wass, Lamberts & Melmed in Handbook of Acromegaly, edited by John Wass. Bristol: BioScientifica

Monitoring

0163-769X/06/\$20.00/0 Printed in U.S.A. Endocrine Reviews 27(4):371-397 Copyright © 2006 by The Endocrine Society doi: 10.1210/er.2006-0002

Craniopharyngiomas

Niki Karavitaki, Simon Cudlip, Christopher B. T. Adams, and John A. H. Wass

Department of Endocrinology (N.K., J.A.H.W.), Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom; and Department of Neurosurgery (S.C., C.B.T.A.), Radcliffe Infirmary, Oxford OX2 6HE, United Kingdom

Recurrence-free probability

Median time of 1st recurrence: 2.5 yrs in both groups (0.5-36).

Karavitaki et al., 2005

Long-term mortality

• Mortality rates 3-6 times higher than of the general population (tumour-related, cardio-/cerebrovascular, respiratory).

Bulow et al., 1998; Pereira et al., 2005; Tomlinson et al., 2001

• 10-yrs survival: 83-93%

Rajan et al., 1993; Hetelekides et al., 1993; Fahlbusch et al., 1999; Van Effentere & Boch, 2002; Karavitaki et al., 2005

Clinical Endocrinology (2012) 76, 151-160

doi: 10.1111/j.1365-2265.2011.04235.x

REVIEW ARTICLE

Rathke's cleft cysts

Raluca Trifanescu*, Olaf Ansorget, John A. H. Wass*, Ashley B. Grossman* and Niki Karavitaki*

*Department of Endocrinology, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital and †Neuropathology Department, John Radcliffe Hospital, Oxford, UK

Rathke's cleft cysts

- Relapse 0 33%
- At last assessment

Major visual field defects 19% (6/31)

FSH/LH deficiency

ACTH deficiency

TSH deficiency

On Desmopressin

53% (17/32)
42% (14/33)
52% (17/33)
45% (15/33)

